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Abstract
The localization properties are investigated within a transfer matrix
formulation. We find that there may exist one extended eigenstate when the
rank of the transfer matrix is odd. An edge state in a quantum Hall system is
such an example. It is a chiral state that can always carry a current.

PACS numbers: 03.65.−w, 72.10.Bg, 73.20.Jc

A non-interacting Schrödinger equation can be formulated into a transfer matrix form. This
method has been used to numerically study Anderson localization and to investigate electron
transport properties of mesoscopic systems [1–4]. Anderson et al [5] used this method to
study the one-dimensional localization problem. Shapiro generalized the formulation into a
high dimensional system [6]. In the Anderson localization model, an electron in a channel
can move in two opposite directions due to the time reversal symmetry. The rank of an
m-channel transfer matrix is 2m, an even number, because there are two modes on each
channel. The transfer matrix method is also used to investigate transport properties of a
two-dimensional electron gas under a strong magnetic field, a quantum Hall (QH) system
in which the time reversal symmetry is broken. According to a semiclassical model, an
electronic state in a strong magnetic field and a smooth potential can be decomposed into
a rapid cyclotron motion and a slow drifting motion of its guiding centre. The direction of
the drifting motion is unidirectional, i.e., electrons are in chiral states [7]. One can use a
so-called Chalker–Coddington (CC) network model to investigate a QH system [8]. In this
model, electrons on each link can move in only one direction. Thus there is only one mode
on each channel. Consequently, the rank of the transfer matrix in the CC model, which is
the number of independent modes, may be odd because there is no restriction on the channel
number. This is different from the transfer matrix in the Anderson localization model, whose
3 Current address: Institut für Theoretische Physik, Universitat Regensburg, 93040 Regensburg, Germany.
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rank is always even. According to the scaling argument of localization [9], all electrons in
a two-dimensional system are localized in the absence of a magnetic field. However, there
exist extended states in a QH system, e.g. edge states. They are chiral states and can always
carry a current. Because of these distinguishable outcomes of the two cases, one may wonder
whether localization properties of a system depend on the rank of its transfer matrix.

In this paper, we investigate how the rank of a transfer matrix affects electron localization.
We find that there may exist at least one edge-state-like eigenstate when the transfer matrix
rank is odd. This kind of extended state can always carry a current because of its chiral nature.
For a transfer matrix with even rank, such a definite result does not exist.

For simplicity, we consider a transfer matrix of a strap system with N modes. Here, we
assume that an electron in a mode moves in a definite direction and we call this direction the
direction of the mode. Therefore, a channel in which electrons can move in two directions is
separated into two unidirectional modes while a channel in which electrons can move in only
one direction is represented by one unidirectional mode. A transfer matrix in the Anderson
localization model has the same numbers of modes with opposite directions and its rank N is
always even. And a transfer matrix in the CC model may have different numbers of modes
with opposite directions and its rank N can be either even or odd. In the vector space spanned
by a set of N linearly independent eigenmodes, |i〉 (i = 1, . . . , N), a vector variable of the
wavefunction at the xth column can be introduced as

ΦN(x) =




φ1(x)

...

φN(x)


 (1)

where the ith component, φi(x), is the probability amplitude in basis vector |i〉. The transfer
matrix M̂N(L) of the system is defined as

ΦN(L) = M̂N(L)ΦN(0) (2)

where ΦN(0) and ΦN(L) are the wavefunctions on two sides of the system, x = 0 and x = L,
respectively. Therefore, the transfer matrix relates the wavefunction on two different sides,
i.e., one can obtain the wavefunction of a system on one side from that on the other side. The
form of the transfer matrix depends generally on the way we choose these two sides. A system
with transfer matrix M̂N(L) with rank N is schematically shown in figure 1. A transfer matrix
M̂N(L) relates wavefunctions ΦN(0) and ΦN(L). Lines represent propagating modes. An
electron in a mode moves along one direction indicated by an arrow.

In order to obtain the rank dependence properties of a transfer matrix M̂N(L), we first
prove four lemmata. It should be pointed out that many results in these lemmata are already
known for the symplectic transfer matrices used in the Anderson localization [2–4, 10]. The
reason that we present them here is to understand our central result in the theorem below. We
define a current operator Ĵ N (L). Its elements are given as

(Ĵ N (L))ij = viδij (3)

where

δij =
{

1 if i = j

0 if i �= j.
(4)

Also vi is the velocity of an electron in mode i. We define that vi = 1 if the direction of the
mode is from left to right and that vi = −1 if the mode direction is from right to left. The
expectation value of Ĵ N (L) is the net current carried by the corresponding wavefunction.
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Figure 1. A transfer matrix M̂N (L) with rank N relates wavefunctions �N(0) and �N(L) of a
system. The square box represents the transfer matrix M̂N (L) of the system. �N(0) and �N(L)

are the wavefunctions on the left and right sides. Lines represent propagating modes and arrows
denote the directions of the modes.

Lemma 1. A transfer matrix M̂N(L) and the current operator Ĵ N (L) satisfy the relations

M̂
†
N(L)Ĵ N(L)M̂N(L) = Ĵ N (L) (5a)

and

M̂N(L)Ĵ N(L)M̂
†
N(L) = Ĵ N (L). (5b)

Proof. Because of the continuity of current in the stationary state, the currents flowing into
and out of the system, that is, the currents at x = 0 and x = L are the same and we have

Φ†
N(0)Ĵ N (L)ΦN(0) = Φ†

N(L)Ĵ N(L)ΦN(L).

By using equation (2), we have

Φ†
N(0)Ĵ N (L)ΦN(0) = Φ†

N(0)M̂
†
N(L)Ĵ N(L)M̂N(L)ΦN(0).

Because the above relation must hold for any wavefunction ΦN(0), we have

M̂
†
N(L)Ĵ N(L)M̂N(L) = Ĵ N (L).

By taking the inverse of Ĵ N (L), we have

M̂−1
N (L)Ĵ−1

N (L)
(
M̂

†
N

)−1
(L) = Ĵ−1

N (L).

According to the definition of the current operator Ĵ N (L), equation (3), Ĵ−1
N (L) = Ĵ N (L).

After multiplying M̂N(L) from the left and M̂
†
N(L) from the right, we have

M̂N(L)Ĵ N(L)M̂
†
N(L) = Ĵ N (L).

Therefore, we prove the lemma. �

Lemma 2. If λ is an eigenvalue of a transfer matrix M̂N(L), 1/λ∗ is also its eigenvalue.

Proof. Let ΨN be an eigenstate of M̂N(L) with eigenvalue λ. We have

M̂N(L)ΨN = λΨN (6)
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where the eigenstate ΨN is defined as

ΨN(x) =




ψ1(x)

...

ψN(x)


 . (7)

By multiplying equation (6) with M̂
†
N(L)Ĵ N(L) from left, we have

M̂
†
N(L)Ĵ N(L)M̂N(L)ΨN = λM̂

†
N(L)Ĵ N(L)ΨN .

By using equation 5(a), we have

M̂
†
N(L)(Ĵ N(L)ΨN) = λ−1(Ĵ N (L)ΨN). (8)

Therefore (Ĵ N (L)ΨN) is an eigenstate of M̂
†
N(L) with eigenvalue 1/λ. Because M̂

†
N(L) =(

M̂T
N(L)

)∗
, 1/λ∗ is an eigenvalue of the transpose M̂T

N(L). And the eigenvalues of a matrix
and its transpose are the same because det(MT − λI) = det(M − λI). Therefore, 1/λ∗ is an
eigenvalue of M̂N(L). �

Lemma 3. The rank N of a transfer matrix M̂N(L) of a system with time reversal symmetry
is an even number and the numbers of modes with opposite directions are equal.

Proof. In a system with time reversal symmetry, the complex conjugate of its wavefunction
ΦN is also its wavefunction. We have the similar relation as equation (2),

Φ∗
N(L) = M̂N(L)Φ∗

N(0). (9)

Suppose that there are m modes whose directions are from left to right and the corresponding
probability amplitudes are φi(x), i = 1, . . . , m. And there are (N − m) modes whose
directions are from right to left and the corresponding probability amplitudes are φi(x), i =
(m + 1), . . . , N . We separate the wavefunction ΦN into two parts, Φ+(x) and Φ−(x). Φ+(x)

contains all modes in which electrons move from left to right while Φ−(x) contains the modes
in which electrons move from right to left. These two parts of the wavefunction are defined as

Φ+(x) =




φ1(x)

...

φm(x)


 Φ−(x) =




φm+1(x)

...

φN(x)


 . (10)

According to equation (2), we have(
Φ+(L)

Φ−(L)

)
= M̂N(L)

(
Φ+(0)

Φ−(0)

)
. (11)

By using equation (9), we also have(
Φ∗

−(L)

Φ∗
+(L)

)
= M̂N(L)

(
Φ∗

−(0)

Φ∗
+(0)

)
(12)

where the direction of Φ∗
−(x) is from left to right while the direction of Φ∗

+(x) is from right
to left. In equation (12), there are (N − m) modes with direction from left to right in Φ∗

−(x)

and m modes from right to left in Φ∗
+(x). Because it is the same transfer matrix M̂N(L) in

two equations, we have N = 2m, that is, the rank of the transfer matrix of a system with time
reversal symmetry is even and the numbers of modes with opposite directions are equal. �

Lemma 4. If λ is an eigenvalue of the transfer matrix M̂N(L) of a system with time reversal
symmetry, 1/λ∗, λ∗, and 1/λ are its eigenvalues, too.
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Proof. We define an operator R̂N(L) of a system with time reversal symmetry. Its elements
are given as

(R̂N(L))ij =
{
δ(i+N/2)j if i = 1, . . . , N/2,

δ(i−N/2)j if i = N/2 + 1, . . . , N
(13)

where δij is defined in equation (4). N is the rank of a transfer matrix of a system with time
reversal symmetry and it is an even number according to lemma 3. The operator R̂N(L) has
the property

R̂N(L)R̂N(L) = 1. (14)

And we have the relation

R̂N(L)

(
Φ−(x)

Φ+(x)

)
=

(
Φ+(x)

Φ−(x)

)
. (15)

By taking the complex conjugate of equation (12), we have(
Φ−(L)

Φ+(L)

)
= M̂∗

N(L)

(
Φ−(0)

Φ+(0)

)
. (16)

After multiplying the operator R̂N(L) from the left, we have(
Φ+(L)

Φ−(L)

)
= R̂N(L)M̂∗

N(L)R̂N(L)

(
Φ+(0)

Φ−(0)

)
(17)

where we use equations (14) and (15). Because Φ is an arbitrary wavefunction, equations (11)
and (17) must be equivalent. Therefore, we have

M̂N(L) = R̂N(L)M̂∗
N(L)R̂N(L).

By multiplying R̂N(L) from the left and using equation (14), we have

R̂N(L)M̂N(L) = M̂∗
N(L)R̂N(L). (18)

By multiplying R̂N(L) to equation (6) from left and using equation (18), we have

M̂∗
N(L)(R̂NΨN) = λ(R̂NΨN).

By taking the complex conjugate, we have

M̂N(L)(R̂NΨN)∗ = λ∗(R̂NΨN)∗.

Hence λ∗ is also an eigenvalue of M̂N(L). According to lemma 2, 1/λ∗ and and 1/λ are also
eigenvalues of M̂N(L). �

Now, we shall prove the rank dependence properties of eigenstates of a transfer matrix
M̂N(L), the central result of this paper.

Theorem 1. Let ΨN be an eigenstate of M̂N(L) with eigenvalue λ. If |λ| �= 1,ΨN is a
localized state that cannot carry a current through the system. If ΨN is an extended state, its
corresponding eigenvalue must satisfy |λ| = 1. That is,{

Ψ†
N Ĵ N(L)ΨN = 0 if |λ| �= 1,

|λ| = 1 if Ψ†
N Ĵ N(L)ΨN �= 0

(19)

where Ĵ N (L) is the current operator defined in equation (3). Furthermore, there is at least
one eigenstate with its eigenvalue, |λ| = 1, when the rank of the transfer matrix is odd.

Proof. According to equations 5(a) and (6), we have

Ψ†
N Ĵ N(L)ΨN = Ψ†

NM̂
†
N(L)Ĵ N(L)M̂N(L)ΨN = Ψ†

Nλ∗Ĵ N (L)λΨN = |λ|2Ψ†
N Ĵ N(L)ΨN .
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Thus, we have

(|λ|2 − 1)Ψ†
N Ĵ N(L)ΨN = 0

that is {
Ψ†

N Ĵ N(L)ΨN = 0 if |λ| �= 1,

|λ| = 1 if Ψ†
N Ĵ N(L)ΨN �= 0.

Ψ†
N Ĵ N(L)ΨN describes the current carried by the eigenstate ΨN . Therefore the eigenstates

with eigenvalues |λ| �= 1 are localized states. From lemma 2, we know that both λ and 1/λ∗

are eigenvalues of the transfer matrix M̂N(L). If M̂N(L) has an odd rank, there exists at
least one eigenvalue such that λ = 1/λ∗, that is, |λ|2 = 1. Therefore, there is at least one
eigenstate with its eigenvalue |λ| = 1 of a transfer matrix with odd rank. Thus the state must
be either extended or critical [10]. However, a transfer matrix with even rank does not have
this property. If an eigenstate is extended, it can carry a current since the expectation value of
current operator Ĵ N (L) in this state may not be zero. �

The transfer matrix described in this paper is usually called a ‘global’ transfer matrix.
Theorem 1 shows that the structure of the local transfer matrix is unimportant. Theorem 1
has indeed been verified in some recent publications [11, 12]. It was shown that at least
one eigenstate is extended when the transfer matrix rank is odd. The difference between the
Anderson localization model and the CC model can be understood from theorem 1. Because
the rank of a transfer matrix in a CC model may be an odd number, there may exist an extended
state. However, the rank of a transfer matrix in an Anderson localization model is always
even, there may be no extended state in this system. In fact all electrons are localized in
a two-dimensional system, which can be described by an Anderson localization model. As
the size of a system becomes larger and larger, the number of states needed to describe the
system becomes larger and larger. When we use a transfer matrix M̂N(L) to describe a high
dimensional system, we must let the system size, L → ∞. Under this limit, the number of
eigenstates of the transfer matrix M̂N(L) tends to infinity as well. We shall ask whether the
extended state in a transfer matrix described by theorem 1, whose number is finite, can really
play an important role. As we know that properties of a usual system are determined by the
average of large numbers of available states and the effect of one or finite number states can be
safely ignored. However, there exist systems whose properties are determined by only a few
states. For example, one edge state of a QH system causes one Hall plateau and all properties
of a superconductor depend on its ground state below the transition temperature. Therefore,
we can use theorem 1 to obtain some general properties of this kind of system. The extended
state described by theorem 1 always carries a current. In a transfer matrix of a system with
time reversal symmetry, there may exist some other kinds of extended eigenstates, which
always appear in pair according to lemma 4. The pair of eigenstates with the eigenvalues λ

and λ∗ have opposite directions. For example, in a system with time reversal symmetry, its
energy eigenstates are momentum degenerate, that is, two eigenstates with opposite momenta
have the same energies. In this system, an extended energy eigenstate cannot carry a net
current when it lies below the chemical potentials of source and drain because electrons can
tunnel through this state in two opposite directions. However, if an eigenstate is extended
and is described by theorem 1, it does not appear in pairs and electrons can move in only
one direction in this state. Therefore this state can carry a net current due to its chiral nature.
The edge states in a QH system are this kind of state. As shown in figure 2, edge states on the
same edges of a sample carry currents in the same direction while edge states on two opposite
edges carry currents in opposite directions. An edge state can carry a current even when they
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Figure 2. A QH system containing two edge states. The edge states on the top carry current from
left to right while those at bottom carry current in the opposite direction, as indicated by arrows.

lie below the chemical potential of source and drain, which causes a Hall plateau in a QH
system. Therefore, an edge state in a QH system is an example of the extended state of an odd
rank transfer matrix.
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